
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ALTERNATE STIMULI FOR THE ELICITATION OF EVENT-RELATED 
POTENTIALS 

 
THESIS 

 
 

Bryan V. Jackson, Captain, USAF 
 

AFIT-ENV-MS-17-M-195 
 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 
 

DISTRIBUTION STATEMENT A. 
Approved for public release; distribution unlimited. 

 
 



 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 
policy or position of the United States Air Force, Department of Defense, or the United 
States Government.  This material is declared a work of the U.S. Government and is not 
subject to copyright protection in the United States.



 

AFIT-ENV-MS-17-M-195 
 

 

ALTERNATE STIMULI FOR THE ELICITATION OF EVENT-RELATED 
POTENTIALS 

 
 

THESIS 

 
Presented to the Faculty 

Department of Systems Engineering and Management 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Systems Engineering 

 

 

Bryan V. Jackson, BS 

Captain, USAF 

 

March 2017 

DISTRIBUTION STATEMENT A. 
Approved for public release; distribution unlimited. 



 

AFIT-ENV-MS-17-M-195 

 

ALTERNATE STIMULI FOR THE ELICITATION OF EVENT-RELATED 
POTENTIALS 

 
 

 
 

Bryan V. Jackson, BS 

Captain, USAF 

 

Committee Membership: 

 

Dr. Michael E. Miller 
Chair 

 

Dr. Brett J. Borghetti 
Member 

 

Lt Col Jeffrey C. Parr, PhD 
Member 

 
 

 
 
 
 
 
 



iv 

 
AFIT-ENV-MS-17-M-195 
 

Abstract 

Brain-Computer Interfaces (BCIs) are systems that leverage user-brain activity to identify 

and perform specific functions.  In applications requiring overt visual attention, focusing 

on visual stimuli with known temporal variation can elicit measurable changes in brain 

activity.  However, elements of BCI applications can be intrusive. This research was 

designed to determine if Event-Related Potentials (ERPs), to include Steady-State 

Visually-Evoked Potentials (SSVEPs), could be elicited and interpreted from less 

obtrusive stimuli.  Specifically, this research explores the use of variable frequency and 

long-wavelength (infrared) stimuli for SSVEP interpretation to explore the application of 

less obtrusive stimuli for application in BCIs.  It was determined that increasing the 

primary wavelength of visual stimuli into the near infrared portion of the electromagnetic 

spectrum negatively impacts the observation of ERPs in human subjects.  Additionally, 

the longer primary wavelengths of visual stimuli have a negative impact on the 

observation of target frequency band powers in SSVEP experiments. However, each of 

these signals were detected across the majority of participants for Light-Emitting Diodes 

(LEDs) with center frequencies as high as 770 nm and across some participants and 

conditions for LEDs with center frequencies as high as 830 nm. 
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ALTERNATE STIMULI FOR THE ELICITATION OF EVENT-RELATED 

POTENTIALS 

 
I.  Introduction 

Background 

Autonomy and automation are two of the Air Force Chief Scientist’s focus areas 

for increasing capabilities and cost savings by increasing manpower efficiencies and 

reducing manpower needs (Endsley, 2015a).  Challenges encountered in the 

implementation of autonomous and automated agents are centered on system limitations 

constrained by the designers’ vision, programming, and limited data available to 

understand the operating environment.  This leads to the continued need for human 

intervention to handle situations for which the autonomous or automated agent has not 

been designed (Endsley, 2015b).  The Air Force’s Science and Technology vision aims to 

capitalize on the agility, innovation, and intelligence of the human and the advanced 

capabilities of autonomy to create effective teams able to accomplish mission activities 

smoothly, simply, and seamlessly. 

To be successful, the approaches for creating these effective teams must be 

human-centered and provide effective user interfaces that can support the operator’s 

requirements for informed trust, manageable workload, adequate situation awareness, and 

ease of interaction.  This flexible autonomy is critical to the performance of the human-

autonomy team, and the interfaces must address key design guidelines and 

communication shortcomings.   
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One technology that may be useful in addressing the communication 

shortcomings of current human-autonomy teams is the Brain-Computer Interface (BCI). 

There are multiple reasons for wanting to connect a person’s brain to a computer.  For 

example, a person with Amyotrophic Lateral Sclerosis (ALS), also known as Lou 

Gehrig’s disease, whose muscle control has decreased such that they can no longer speak, 

walk, or write may benefit from the use of a BCI to interact with their environment. 

Additionally, paraplegics and other persons with limited mobility or communication may 

find it more efficient or effective to use a BCI in any given situation than to rely on their 

own faculties.  Persons with impaired muscular function, caused by degeneration of 

pathways from the brain to muscle, can have their brain activity amplified and fed into a 

computer with the appropriate algorithms to process them thereby providing another 

communication channel for the user (Prueckl & Guger, 2009).  Visually-Evoked 

Potentials (VEP) have been used within the disabled community to create BCIs.  VEPs 

are a voltage response, in the brain, to events or stimuli; therefore, they are considered 

Event-Related Potentials (ERP).  BCIs that utilize ERPs “exploit the fact that the neural 

processing of a stimulus can be modulated by attention.  In particular, attention to an 

event can enhance the positive and negative peaks of the ERP time-locked to this event. 

ERP-based BCIs attempt to detect these modulations to infer the stimulus that the user 

intended to choose,” and systems which rely on this phenomena could be used to reflect 

user attention in various applications (Treder & Blankertz, 2010).  Often, VEPs are 

generated when the user focuses their visual attention on localized flickering light sources 

to trigger programed responses in the BCI.  By determining the particular visual stimuli 
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upon which the user is focused, the computer can activate a set response corresponding to 

that source. 

Although this interface has not received acceptance by the broad user community 

due to distractions caused by the visible flickering of light, recent observations made by 

the National Aeronautics and Space Administration (NASA) suggest there may be room 

to improve the interface by using non-disruptive stimuli.  In an experiment using VEP to 

understand user attention and fixation during flight simulation, NASA reported 

unexpected responses which they initially attributed to infrared emitters in a SmartEye 

Eye Tracking System.  This observation raised the question of whether nonvisible or 

flickering lights could be used to invoke a VEP that could be measured and applied 

within a BCI, removing the distraction caused by visibly flickering lights associated with 

BCIs applying VEP (K. Kennedy, personal communication, August 16, 2016). 

Current interfaces provide necessary communication channels between the users 

and the systems; however, there is room for improving many of the interfaces we take for 

granted.  A computer mouse can be applied to complete a task such as selecting a button 

or icon within a user interface.  However, this simple task typically requires the user to 

complete multiple subtasks including identifying an action to complete, grabbing the 

mouse, moving the mouse to translate the cursor to the desired location, and clicking on 

the mouse button to complete the task.  During this process, it is not uncommon for a user 

to move the point of eye fixation from the button they wish to select on a display to the 

mouse and back multiple times.  There is potential for this and other systems to be 

improved by reducing the number of subtasks and the time required to complete these 

subtasks through the use of BCIs.  Such systems are those such as computer-based tasks 
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(even using the keyboard), home entertainment options like changing television channels, 

and replacing or compensating for disabilities.  Even applications requiring near 

instantaneous decision-making, such as targeting tasks executed during military 

operations or selecting a person of interest during surveillance and reconnaissance 

missions, could benefit from reducing the number of subtasks and the associated time it 

takes to complete essential tasks.  

Problem 

Although current interfaces meet the needs of the users relying upon them to 

interface with their associated systems, there are many areas for improvement, which 

could benefit these user groups.  Computer systems rely on the user interacting with 

keyboards or mice to communicate their desires to the computer, and these interfaces 

inject additional tasks into the process of completing any action with a computer.  Other 

systems that use gaze trackers or muscle movements are also hindered by the lack of 

accuracy associated with determining the user’s intentions/desires and by lacking depth 

of control, which would allow the user to communicate desires in three dimensions.  

Even the acceptance of current VEP-based interfaces is hindered by the disruption 

provided by the associated flashing lights.   

Objective 

 This research sought to determine if Event-Related Potentials (ERP) can be 

elicited and measured with minimal intrusiveness and disruption to the user by using non-

flickering visual stimuli or stimuli which emit energy outside the human visible range 

and an EEG to interpret the brain’s responses to these stimuli.  The stimuli of concern in 
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this research are near infrared or short wavelength infrared LEDs, and visible Light 

Emitting Diodes (LED) operating at frequencies faster than humans can perceive.  

Justification 

A primary issue in the Human-Machine Teaming thrust within AFRL’s 

Autonomy Research Strategy is improving the bandwidth of communication between the 

human and the machine.  This barrier exists for multiple reasons including significant 

differences in communication speed between the human and the system, the differences 

in specificity of communication each element expects, and the machine’s inability to 

sense and respond to implicit human communication modes.  Significant research has 

been conducted towards reducing this barrier in recent years, often including methods to 

assess human state information.  For example, systems have been explored which 

incorporate eye tracking, physiological monitoring, and monitoring and learning 

relationships between changes in human behavior and psychological state.  Despite this 

research, each of these technologies has limitations that have slowed their adoption.   

Scope 

The research effort leverages past lessons learned in the development and 

application of BCIs to investigate the use of VEP that do not suffer from the distraction 

produced by today’s flickering VEP BCI devices.  The tasks essential to completing the 

research and answering the research questions are the development of the test bed and 

development of methods for evoking Event-Related Potentials, recording potential-

related signal data, and interpreting potential-related signal data.  
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Hypothesis 

 The hypothesis of this research is that Event-Related Potential energy can be 

generated in the human brain in response to non-flickering LEDs emitting light between 

640 and 940 nm, and this response can be interpreted using EEG collected data. 

Additionally, frequencies as high as 60 Hz can be used to produce discernable Event-

Relate Potentials when presenting peak wavelengths between 640 nm and 940 nm.   

Research Questions 

This research is focused on answering the following questions: 

a) How does the wavelength of light emitted from Light-Emitting Diodes 

affect the signal characteristics of Event-Related Potentials produced in 

the human brain?  More specifically, which wavelengths of light-emitting 

diodes can be used to elicit VEPs in the visual cortex? 

b) How does the frequency of light produced by Light-Emitting Diodes affect 

the characteristics of Event-Related Potentials produced in the human 

brain?  More specifically, can oscillatory frequencies above the human 

CFF be used to elicit oscillatory responses in the visual cortex without 

producing the visual perception of flicker? 

Methodology 

A literature review was conducted to determine the characteristics of past research 

efforts, which led to the successful production of Event-Related Potentials, successful 

signal feature extraction, and successful analysis of signal features able to be used in 
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practical BCI design.  These design elements were incorporated into the design of 

research to reduce the likelihood of injecting error into the research and increase the 

likelihood of producing discernable results.  

This literature review was used to guide the specification and construction of a 

test bed.  This test bed includes signal elicitation, data acquisition, and signal analysis 

components.  When the user focuses their attention on a temporally-varying stimuli, a 

temporally varying electrical response is created in the visual cortex.  In turn, this 

response is captured using EEG and recorded as signal data and voltage readings within 

an EEG program.  The data is then analyzed to determine if there is a neurological 

response to the stimuli. 

A Human-in-the-Loop experiment is then conducted in which a group of 

participants were exposed to 5 breadboards equipped with visible, near-infrared, and 

short wavelength infrared LEDs.  The EEG monitored signals from regions of the brain 

consistent with the VEP.  Signal analysis was performed to reduce noise and isolate 

signal components to correlate the findings.  Additional data analysis included plotting 

each subject’s spectral results and topographical maps for visual inspection of brain 

responses.  

Implications 

 This research demonstrates the potential for using non-obtrusive stimuli for 

evoking ERPs in human subjects.  The findings could lead to the development of 

improved training systems and operational systems that can enable time-specific 

feedback to the user and communication to the other agents based on specific user 
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attention versus generalized 2-D observations of gaze and reliance on post event 

information recall to identify user attention.  These systems could be integrated into DoD 

and civilian applications to improve the effectiveness and efficiency of the system. 

Document Overview 

The remainder of this document follows the format of a traditional five chapter 

thesis.  Chapter II captures the review of literature deemed relevant to the design and 

execution of this research.  Chapter III provides a summary of methods pursued in the 

research and a final approached used to collect and analyze data from participants.  

Chapter IV provides the results from the data collection and analysis processes with 

graphical representation of observations.  Finally, Chapter V provides a summary of the 

findings and observations from the data collection and analysis efforts.  Additionally, 

Chapter V provides a discussion of the limitations assumed in the completion of the 

research and some future research approaches that could reduce the impact of these 

limitations.   
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II.  Literature Review 

Chapter Overview 

The purpose of this research was to explore the feasibility of using LEDs that 

produce long wavelength energy and LEDs oscillating beyond the Human Critical Fusion 

Frequency (CFF) as target stimuli in a Brain-Computer Interface-based experiment by 

evaluating the production of Event-Related Potentials (ERPs) and more specifically 

Visual Evoked Potentials (VEPs).  This research is complementary to previous research 

that focuses on the use of flickering LEDs as stimuli to generate electrical potentials in a 

human subject’s cerebral cortex.  These flickering LEDs are typically used in laboratory 

environments and in situations where the flickering light does not impede task 

performance; however, the goal is to determine whether non-flickering LEDs could 

potentially be used as a tool to collect data with minimal intrusiveness to the subject. 

The use of LEDs to generate VEPs in human subjects is well documented for 

visible light LEDs operating at frequencies between 1 and 100 Hz (Herrmann, 2001; 

Prueckl & Guger, 2009; Sakurada, Kawase, Komatsu, & Kansaku, 2015; C. H. Wu et al., 

2011).  This research is relevant to the design of experiments to assert the potential to 

generate VEPs with non-visible light from LEDs.  The elements within the prior literature 

most relevant to the current research are VEP signal generating methods, signal reception 

methods, signal decoding methods, spectral analysis methods, experimental design, and 

experimental procedures.  

This research effort hinged upon the design of experiments used to elicit VEPs; 

therefore, the focus of this literature review was peer-reviewed journal papers, books, and 
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test reports. Although the applicability of this research is geared toward the development 

of BCIs, this research is focused on identifying our ability to use unobtrusive stimuli to 

evoke cortical responses.  To that end, this chapter focuses on imaging methods, 

stimulation methods, signal analysis methods, and test bed design. 

Introduction 

Event-Related Potentials are voltages occurring in the brain in response to 

sensory, perceptual motor, or cognitive events:  “They are thought to reflect the summed 

activity of postsynaptic potentials produced when a large number of similarly oriented 

cortical pyramidal neurons fire in synchrony while processing information” (Sur & Sinha, 

2009).  Event-Related Potentials include any potential energy in the brain that is created 

in response to auditory, visual, tactile, motor, and cognitive stimuli (Teplan, 2002).  ERPs 

that occur in response to any of the aforementioned stimuli are generally categorized 

according to the form of the stimuli that caused the response (e.g., Motor Evoked 

Potentials, Auditory Evoked Potentials, Visual Evoked Potentials, etc.).  In the literature 

of primary interest, it was found that one term, Event Related Potential (ERP), was used 

to classify responses generated by visual, auditory, and tactile stimulation. (Landa, Leos; 

Krpoun, Zdenek; Kolarova, Martina; Kasparek, 2014; Sur & Sinha, 2009; Treder & 

Blankertz, 2010).  Generally, the term “ERP” is used when neural potentials are 

discussed and examined in the time domain with the onset of the visual stimuli being 

represented at the origin and neural activity being represented after the onset of the 

stimuli.  However, when stimulated by visual means and measured across the visual 

cortex the term Visual Evoked Potentials is used and represents the information that 
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highlights the function of the visual system (Kraemer, Abrahamsson, & Sjostrom, 1997).  

A subset of the Visual Evoked Potential that is also relevant to this research is the Steady-

State Visual Evoked Potential (SSVEP).  The SSVEP is the periodic response to a 

periodic modulation of an exogenous visual stimulus (Gao, Wang, Gao, & Hong, 2014; 

Norcia, Appelbaum, Ales, Cottereau, & Rossion, 2015).  Matching the stimuli’s 

identified modulation frequency and the subject’s associated frequency response to one 

another allow the identification of covert attention when multiple visual stimuli are 

present (Wang, Wang, Gao, & Hong, 2006).  Actions such as fixating visual attention on 

an object in an environment can be interpreted as intent to select the item, permitting 

users to provide a response based on the associated stimulus by simply maintaining visual 

fixation and attention on that object.  One system that can leverage the ERPs is a Brain-

Computer Interface (BCI). 

Types of Brain-Computer Interfaces 

A BCI is a tool or system that enables information, in the form of electrical 

signals, to pass from the human brain to a computer or some other output device (Gao et 

al., 2014).  A BCI that leverages the visually evoked ERP feature is considered a gaze 

dependent system because it requires the user to focus their attention on a desired stimuli 

(Wolpaw, Birbaumer, McFarland, Pfurtscheller, & Vaughan, 2002).  The figure below 

provides a visual representation of a generic BCI concept.  There are multiple reasons for 

wanting to connect a person’s brain to a computer.  For example, a person with 

Amyotrophic Lateral Sclerosis (ALS), also known as Lou Gehrig’s disease, whose 

muscle control has decreased so much that they can no longer speak, walk, or write may 
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benefit from the use of a BCI to interact with their environment (Diez et al., 2013; Treder 

& Blankertz, 2010; Wang, Gao, Hong, Jia, & Gao, 2008).  Additionally, paraplegics, 

other persons with limited mobility or communication ability, and persons without 

disabilities may find it more efficient or effective to use a BCI in any given situation than 

it is for them to rely on their own capacities (Graimann, Allison, & Pfurtscheller, 2010; 

Yin et al., 2013).  

There are multiple methods for connecting the brain to computers and 

transmitting changes in brain activity, and some methods for applying BCIs, if highly 

effective, have the potential to increase the information exchange rate between humans 

and machines by reducing the need for complex motor movements required when 

interacting with a computer.  These methods are easily organized into two groups, the 

invasive BCIs and the non-invasive BCIs.  These two classes of systems are largely 

differentiated by the method used to image brain activity.

 

Figure 1 - Generic example of components necessary in a Visual Evoked Potential 

based Brain-Computer Interface 

Data Acquisition 

and 

Amplification 

Visual Stimuli Signal data 

transmission 

User/Subject 
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Imaging Methods 

The changes in brain activity can be observed by using either 

electrocorticography (ECoG) or electroencephalography (EEG) to measure the voltage 

activity across different regions of the brain.  The use of ECoG is not as common as EEG 

in research or practical applications because of ECoG is an invasive method for 

collecting data, and it is less acceptable than EEG to users (Wang et al., 2008).  ECoG 

requires epidural electrode strips to be implanted over the regions of the brain of concern 

in applications.  EEG, however, typically relies on electrodes in contact with the 

epidermis and is much less invasive to the user.  In a BCI application, both EEG and 

ECoG are used to transmit the user’s intent, via brain signal data, from the user to the 

signal processor.   

 ECoG-based BCIs are a rather invasive method for data collection because it 

relies on the subject consenting to the surgical application of sensors to the brain.  The 

ECoG-based BCIs have a high signal to noise ratio, which is preferable in the application 

of BCIs (Lee et al., 2006; Singla, Khosla, & Jha, 2014; Z. Wu & Su, 2014).  However, 

the EEG-based BCIs are more practical because they are more acceptable to subjects 

because of their non-invasiveness (Wang et al., 2008).  It seems unlikely to encounter 

participants who are willing to consent to using ECoG unless they feel a dire need for it.   

The majority of research involving ECoG for the imaging of brain signal data employs 

persons with ALS (Wang et al., 2008).  Figure 2 illustrates the placement of an EEG cap 

on a participant.  In addition to the potential for causing irrevocable damage to a subject, 

it would be impractical to find persons who are qualified to apply these ECoG sensors to 

subjects for this experiment.     
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Figure 2 – Electroencephalogram (EEG) 

It is believed that EEG works by measuring the summation of voltages generated 

when the release of neurotransmitters at dendrites of cortical pyramidal cells causes 

current flow between the apical dendrites and the cell walls to build up and to create 

dipoles at thousands of neurons at the scalp (Luck, 2005a; Sur & Sinha, 2009).  While 

electrical fields are created whenever there is synaptic activity, the resultant voltages are 

only measurable with EEG when thousands of neurons exhibit this synchronous activity.   

EEG can be an inexpensive solution for providing an imaging solution for BCI-

type applications.  Additionally, EEG systems do not require surgical procedures or 

extensive training to begin collecting data from human subjects.  Compared to other 

systems, EEG provides an increased ability to distinguish between changes within 

specific time intervals in the signal data (Ferreira, Miranda, Miranda, & Sakamoto, 2013; 

Graimann et al., 2010; H. J. Hwang, Kim, Choi, & Im, 2013).  However, EEG is not 

without limitations and is susceptible to noise artifacts at each sensor location that occur 
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because of the compounding brain activity occurring between neural networks and the 

scalp sensor locations (Burle et al., 2015; Cheng, Gao, Gao, & Xu, 2002).    

Stimulation Methods 

BCIs are constructed to leverage a variety of human senses (e.g., visual, auditory, 

physical, etc.) to generate evoked potentials related to external stimuli but also can 

leverage internal processes based on cognition and motor functions (Norcia et al., 2015).  

These evoked potentials are categorized based on the modality and features of the 

external stimuli, and the modality most relevant to this research is the visual-evoked 

potential.  Some BCIs rely on VEPs to determine the signal that is being generated by 

any given stimulus (Cilliers & Van Der Kouwe, n.d.; Wang et al., 2006).  VEPs are 

measurements of the brain’s electrical activity in response to stimulation along the 

pathway of the optic nerve and are primarily captured in the occipital lobe of the brain.  

These measurements are used to understand a person’s focus and, presumably, intent in 

order to provide a response based on the associated stimulus.  There are numerous 

research efforts that have explored the influence of gaze and focal attention on VEP 

amplitudes and latencies (H.-J. J. Hwang et al., 2015; Treder & Blankertz, 2010).  The 

paradigms under which experiments, relevant to this research, are frequently categorized 

are time-phased responses, steady-state visual evoked potentials (SSVEPs), and flash 

visual evoked potentials (FVEPs).  Research regarding each of these responses are 
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covered in the following sections of this chapter (H. J. Hwang et al., 2013; Wang, Yijun; 

Gao, Xiaorong; Hong, Bo; Gao, 2010). 

Time-phased responses to the onset or offset of visual stimuli are generally 

referred to as visual-P300 responses (Citi, Poli, Cinel, & Sepulveda, 2008; Donchin, 

Spencer, & Wijesinghe, 2000; Yin et al., 2013).  P300 responses are thought to be caused 

by cognition in scenarios that follow the oddball paradigm, which include the random 

presentation of target stimuli to the human subject (Lenhardt, Kaper, & Ritter, 2008).  

However, the responses are ERPs whose waveforms are examined in the time domain for 

categorization and any of the features could be used to identify the brain’s processing of 

the stimuli.  In the time domain, these potentials are most frequently categorized 

according to the direction of their deflection (P = Positive and N = Negative), the latency 

of the amplitude (e.g., 100 = 100ms, 200 = 200ms, 300 = 300ms, etc.) occurrence relative 

to stimuli, or the order of the amplitudes occurrence (e.g., P2 = the second positive 

deflection) in a time-phased plot (Landa, Leos; Krpoun, Zdenek; Kolarova, Martina; 

Kasparek, 2014).  Generally, a time-phased ERP plot would capture the ERP at some 

time point before the presentation of a stimuli all the way through and beyond the 

presentation of the stimuli and for a one second period as presented in the following 

figures (iMotions, 2016). 
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Figure 3 - Time-based ERP plot example showing categorization of response 

according to latency 

 

An FVEP relies on the visual flashes of information (e.g., experiments using 

LEDs to generate flashes) to generate specific data while a subject focuses on one 

stimulus after another.  The FVEPs are time and phase-locked to flashed onsets of the 

stimuli.  This method was preferred in one study because it allowed the use of mutually 

independent flickering sequences generated by random ON–OFF durations and used the 

timing of flash onsets to segment EEG data followed by simple averaging (Lee et al., 

2006).  However, it does not appear to be a desired method for BCI applications, rather, it 

is used in situations when a person is unable to focus on specific stimuli or patterns or 

when conducting medical evaluations for disease identification (Tartaglione, 

Spadavecchia, Maculotti, & Bandini, 2012).  Only peak-to-valley amplitudes, rather than 
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correlation values or power spectrum, are computed and compared to easily determine 

the target stimuli upon which the subject is focused. 

A Steady-State Visual Evoked Potential (SSVEP) is an oscillatory cortical 

potential that occurs in response to visual stimulation at the same frequency as the 

observed stimuli (C. H. Wu et al., 2011).  These signals may be triggered by any 

repeatedly flashing light, such as your computer screen refreshing every 60 Hz and have 

been observed at frequencies from 1 to 100 Hz (Herrmann, 2001; Z. Wu, 2016). By 

viewing a light flashing at a particular frequency, the visual pathway is stimulated and 

causes the frequency to radiate throughout affected areas of the brain.  This stimulation 

produces electrical signals at both the base frequency and multiples thereof (Wang et al., 

2008).  Oscillations occurring after and phase-locked to the on/offset of the stimuli are 

categorized as evoked oscillations (Herrmann, 2001).  Additionally, the use of SSVEP-

based systems can allow the system to distinguish between the user’s intent when 

multiple stimuli are present because the neural response to events or stimuli can be 

increased by attending to the stimuli versus observing the event through one’s periphery 

(Treder & Blankertz, 2010).  SSVEPs also enable the reduction of false positive 

identification of stimuli through identification of the stimulus frequency (Wang et al., 

2006).  SSVEP-based methods require control of the oscillations of the light source (e.g., 

controlling update rate of a stimulus area on a monitor, power level and oscillation of 

LEDs, etc.) and do not require much training.  However, SSVEP experiments may be 

impacted by random alpha rhythm noise artifacts that may arise at frequencies below 14 

Hz (Lee et al., 2006).  Additional features called harmonics may occur in the amplitude 

spectrum associated with SSVEPs due to nonlinear information transference in the visual 
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system (Wang et al., 2008).  Harmonics can be identified as the summation of sinusoidal 

waveforms that are equivalent to integer multiples of one another.  In a periodic SSVEP 

function, the harmonics may be captured at these integer multiples of the base frequency 

when analyzing the PSD of the measured neural activity.  This method is often preferred 

when creating BCIs because of the minimal training requirements relative to other BCI 

methods (Yu Zhang, Zhou, Jin, Wang, & Cichocki, 2015). 

Signal Analysis  

 Generally, the analysis of ERPs involves steps to emphasize the elicited response 

over surrounding noise artifacts, identify the relative density of the response power of a 

window of frequencies, identify signal-to-noise ratios, and categorize the components of 

the identified response.  For time-based responses, analysis includes visual inspection of 

the measured waveforms to include, component identification, amplitude measurement, 

latency measurement, and ordinal identification.  The component measurements facilitate 

the identification of specific types of brain responses, such as the recognition of object in 

an oddball task by identifying the P300 component in the ERP.  Frequency-based 

responses almost always include some form of Power Spectral Density analysis to 

separate and identify amplitudes of responses occurring at multiple frequencies.  

Additional analysis for both response types include statistical analysis of the factors 

affecting the experiment and its outcomes by using the Analysis of Variance (ANOVA) 

tests against each factor; however, no literature capturing the use of statistical analysis to 

identify responses against noise were identified, and it appears that visual inspection is 

the primary method for identifying responses to stimuli.  
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Independent Component Analysis (ICA) is associated with FVEPs and is 

employed to decompose measured EEG and associated data for data reconstruction (Lee 

et al., 2006).  This method is used to separate the FVEP portion of data from the EEG 

recordings (Lee et al., 2006).  “Electrical signals from the brain are decomposed into 

independent components (ICs) by means of solving a matrix in which each column 

represents a spatial map tailoring the weights of the corresponding temporal component 

at each EEG sensor.  Task-related ICs are screened and identified by correlating their 

spatial maps with a pre-defined spatial template, which is created based on the spatial 

weight distribution of the P2 peak in a conventional FVEP obtained from each 

individual” (Lee et al., 2006).  This method relies on the averaging of VEPs from 

peripheral and directed stimuli to determine where the subject’s attention is directed.  

Additionally, this method is also appropriate for ERP and SSVEP experiments because 

the underlying assumptions of EEG data representing linearly mixed signals still hold, 

and ICA is targeted at separating and analyzing these mixed components (Urigüen & 

Garcia-Zapirain, 2015). 

Canonical Correlation Analysis (CCA) is used to measure the relationship of one 

multi-dimensional data set to another (Urigüen & Garcia-Zapirain, 2015; Yu Zhang, Jin, 

Qing, Wang, & Wang, 2012).  “CCA is a multivariable statistical method for seeking 

linear combinations that maximize the correlation between two sets of data” (Yangsong 

Zhang, Xu, Cheng, & Yao, 2014).  CCA can be leveraged by correlating one or more 

input signals to an electrical signal of concern where the input signal with the highest 

correlation to the electrical signal can be identified as the signal to which the user is 

responding.  CCA has proven appropriate for analysis of SSVEP experiments and often 
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outperforms Power Spectral Density (PSD) analysis, but CCA may suffer from over-

fitting due to the lack of data relevant to the trial being included in the pre-constructed 

sine and cosine waveforms used as references (Yu Zhang et al., 2015). 

PSD analysis is a type of frequency-domain analysis in which a structure is 

subjected to a probabilistic spectrum of harmonic loading to obtain probabilistic 

distributions for dynamic response measures and is most frequently used to detect SSVEP 

responses (Middendorf, McMillan, Calhoun, & Jones, 2000; Wang et al., 2008).  A root-

mean-square (RMS) formulation translates the PSD curve for each response quantity into 

a single, most likely value.  Because PSD curves represent the continuous probability 

density function of each response measure, most of the integrated area will occur near the 

resonant frequencies of the structure.  This means that the average power of the signal 

over the chosen frequency band will be calculated, and the stimulated frequency may be 

identified as the frequency with the highest average power.  Fast Fourier Transform 

(FFT) changes a wave from the time domain to the frequency domain and is a method for 

analyzing the signals generated by SSVEPs (Singla et al., 2014).  Additional, complex, 

methods for leveraging an FFT can be used to reuse stimulation frequencies in singular 

experiments by identifying phase shifts in the frequency-based neural response through 

phase information detection.  It is worth noting that the design of the stimuli for a phase-

locked SSVEP experiment is important and requires a stable phase for each of the stimuli 

(Wang et al., 2008).   
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Test Bed Design 

In addition to using an EEG based test bed, it is important, for reflection of 

practical systems, to design a system that is affordable.  Computers are typically used to 

address all of the processing requirements associated with the experiments; however, 

Digital Signal Processors (DSP) can be used to relieve the user/subject of the requirement 

to have a computer that has the cost associated with functionality required for analysis 

(Wang et al., 2008).  To further reduce cost, EEG use can be limited to the occipital 

region of the brain, limiting the number of channels of data that must be processed.  This 

limitation is acceptable as the occipital region is nearest the visual cortex and, therefore, 

is the area most likely to reflect VEP activity (Wang et al., 2008).  

Another cost cutting method employed is the use of computer monitors and 

embedded components to execute experiments.  The majority of SSVEP-based 

experiments used the visual display and color ranges already existing in computer 

monitors.  The known refresh rate associated with common computer monitors (i.e., 

Liquid Crystal Displays (LCDs), Cathode Ray Tube (CRT), LED, and Thin-Film 

Transistor (TFT)) enables researchers to easily account for it in the data collection and 

signal analysis stages of experiments (Treder & Blankertz, 2010; Wang et al., 2008).  

LEDs have been used in a number of BCI-based ERP experiments to provide visual 

stimulation for the subject (Herrmann, 2001; Prueckl & Guger, 2009; Sakurada et al., 

2015; C. H. Wu et al., 2011).  LEDs provide an inexpensive and controllable stimuli to 

which subjects can attend and come in a variety of sizes, colors, and power levels that can 

be controlled with simple adjustments to circuits.  It is common to control the oscillations 

of the LEDs, when not using a computer monitor as a stimuli, by programming 



23 

microcontrollers to provide precise control of the timing of the LEDs’ oscillations (H.-J. 

J. Hwang et al., 2015; Kuś et al., 2013; Wang et al., 2008; C. H. Wu et al., 2011).  LEDs 

are an attractive choice for experiments that require precise and independent control of 

multiple stimuli. 

Conclusion 

The accuracy associated with both SSVEP and FVEP are above 80%, so either 

would be considered reliable for the purpose of this research (Lee et al., 2006; Singla et 

al., 2014).  Based on the reviewed literature, an ERP experiment focused on evaluating 

the observed time-locked response to visual stimuli and SSVEP-based oscillatory 

response seems to be able to best address the proposed research questions.  Although 

there are a number of methods frequently used to generate and analyze ERP signals, the 

use of PSD analysis, FFT, and ANOVA appear to be most useful for this effort.  

Additionally, these analysis methods should make the signal analysis more of a signal 

matching effort (ensuring consistency and discernable results) than a mathematical 

excursion in this offline experiment.  Another beneficial finding from the existing 

literature associated with ERP-based BCIs is the identification of useful data and the 

locations most applicable to this data collection.  Most of the literature associated with 

SSVEPs has highlighted the most identifiable and useful data as coming from the 

occipital lobe.  This makes sense because the occipital lobe is the portion of the brain that 

handles and processes visual information.  Additionally, the findings make a case for 

focusing data collection efforts on the occipital regions when using the EEG for data 

collection.  By leveraging the lessons learned from existing literature associated with 
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ERP-based BCIs the experiment should be in a good position to produce consistent 

results at a relatively low setup cost. Because the research will focus on an area of this 

topic that has yet to be explored, it is anticipated that benefits of ERP-based BCI 

literature will be limited to test design and signal generation and analysis methods.   
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III. Methodology 

Chapter Overview 

The purpose of this research is to determine the feasibility of generating Event-

Related Potentials (ERP), specifically Visual Evoked Potentials (VEP), in human subjects 

by using visual stimuli producing light 1) outside of the visible wavelengths and 2) 

modulating at frequencies beyond the human Critical Fusion Frequency (CFF).  This 

chapter is intended to capture the plan for making these determinations.  The method 

used follows the Institutional Review Board approved protocol (Protocol: 

FWR20170014H; Approved 10 January 2017) for evoking ERPs with unobtrusive 

stimuli.  The approval letter for this protocol is attached in Appendix C. 

Overview of Research Method  

The premise of the research is that there is a phase locked response between the 

stimuli used to evoke a response in the brain and the brain’s response to the stimuli.  The 

approach pursued in this research follows the design of many steady-state visual evoked 

potential (SSVEP) electroencephalogram (EEG) based brain-computer interface (BCI) 

studies by presenting frequency modulated visual stimuli to a participant, monitoring the 

participant’s brain activity across different channels, recording that brain activity, 

removing undesired artifacts in the collected activity, and analyzing the recorded brain 

activity to identify anticipated responses.  

Data collected addressed the following variables 1) the peak wavelength of light 

emitted from the each LED; 2) the frequency of the LED’s modulation; 3) the intensity of 

the energy; 4) the perception of the illumination; 5) perception of flicker from the LED; 
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and 6) measured neurological response to stimuli.  Of the variables, the independent 

variables are the peak wavelength of the light emitted from the LED and the frequency of 

the LED’s illumination. The dependent variables are the subjective determination of 

perceived illumination, subjective determination of perceived flicker, and the measured 

biological response to the stimuli.  The power output for the LEDs was controlled across 

the group of participants to facilitate a better understanding of the relationships between 

each of the other variables. 

Participants 

This research was conducted with a group of participants that included 1 female 

and 5 males ranging in age from 23 to 57.  Participants were volunteers who were 

solicited locally via coordination of the experimental protocol and campus intranet 

advertisements.  Participants were not offered any form of compensation to participate in 

the research effort.  There were 6 participants recruited for this research and although 

data collection issues such as excessive blinking or signal dropout were anticipated, there 

were no data collection issues encountered during the experiment.  There were no special 

considerations for gender, age, or corrective lenses because there are neither anticipated 

impacts to any of these populations nor were these populations expected to produce 

varying results in the research.  However, participants were expected to be able to focus 

on 5mm LEDs at a minimum viewing distance of 18 inches, and the age range of 

participants and use of corrective lenses was recorded for completeness.  Additionally, it 

was anticipated that the participants would include a diverse group of people due to the 

potential participants available at the Air Force Institute of Technology and the Air Force 
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Research Laboratory.  Similar research efforts, eliciting Visual Evoked Potentials, have 

used participant groups comprised of 1 to 20 participants to provide confidence in the 

research (Cilliers & Van Der Kouwe, n.d.; Lee et al., 2006; Nakanishi, Wang, Wang, 

Mitsukura, & Jung, 2014b; Prueckl & Guger, 2009; Singla et al., 2014). For example, a 

standard set of EEG signal data was collected from 7 participants to determine the LED 

upon which the participants were focused (Cilliers & Van Der Kouwe, n.d.).  Additional 

experiments relied on participant pools of 3 or 10 people to present diverse data for 

analysis (Nakanishi, Wang, Wang, Mitsukura, & Jung, 2014a; Prueckl & Guger, 2009).  

Additional screening of participants included self-identification of medical history 

experiencing epileptic seizures, photosensitive epilepsy, and compromises to the 

participant’s central or peripheral nervous systems.  Photosensitive epileptic seizures can 

be triggered when visual stimuli are oscillated between 5 and 30 times per second, and 

these seizures can present a risk to the welfare of the participants (“Photosensitivity and 

Seizures,” 2013). Also, participants with impeded central and peripheral nervous systems 

may present uncertainties that cannot be identified or mitigated. Therefore, participants 

who reported exhibiting these characteristics were excluded or asked to exclude 

themselves from the experiment.  

Laboratory Environment 

The research was conducted at the Air Force Institute of Technology, building 

640, room 340 on Area B of Wright-Patterson Air Force Base.  The laboratory in which 

the experiment was conducted is approximately 30ft x 20ft with desktops and partitioned 

cubicles.  The experiment was conducted in a 7ft x 8ft cubicle within this laboratory by 
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setting up the LED displays on top of a stationary desk.  The laboratory was warm at 

times and a stationary fan was used to keep the participants cool enough to prevent 

perspiration because it could lead to noise in the EEG data collected during the 

experiment.  The cooling fan was angled in a manner such that the movement of air 

across the participant’s face did not encourage blinking.  An additional fan was placed 

near and angled away from the participant to provide noise abatement.  The laboratory’s 

primary source of light consisted of overhead fluorescent lighting and residual LED 

lighting from computer monitors.  Both of these sources had the potential to inject noise 

artifacts into the data collected and were removed by turning them off and creating other 

means of ambient light in the laboratory.  An incandescent lamp was used to create 

ambient light in the room to reduce safety hazards and aid the participant in attending to 

the specific LED for which energy was being emitted.   

The incandescent lamp contains one 60 W bulb and was aimed away from the 

participant in a manner such that the illuminance at the surface of the display was 1.4 lux, 

and the illuminance at the surface of the desk is 0.7 lux.  Based on trial studies, the 

illuminance measured at the display has the potential to impact the participants’ ability to 

identify the stimulus and attend to it.  The illuminance maintained during the experiment 

was intended to facilitate the participant’s ability to attend to a fixation pointed located 

adjacent to each of the target stimuli during each of the experiment’s tasks.  The 
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illuminance measurements were obtained by using a Konica Minolta T-10 Illuminance 

Meter, shown in Figure 5. 

  

Figure 4 - Konica Minolta T-10 Illuminance Meter 

The illuminance meter was placed on the desk that supported the LED display or 

held by hand at the surface of the LED display and all lighting other than the 

incandescent lamp was turned off when measurements were taken.  Measurements were 

recorded when the digital display of the illuminance meter reached its highest value 

under a given condition.  The illuminance meter was capable of recording measurements 

between 0.01 and 900 lux and was not expected to impose any limitations on the 

illuminance measurements of the data collection environment.    

Apparatus 

There were several pieces of equipment used to conduct this experiment.  This 

includes a BIOPAC MP150 data acquisition system, EEG100C electrode caps, a laptop 

for signal processing and analysis, LED displays, and three Arduino Mega 2650 

microcontrollers.   
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Figure 5 - Flow of Experiment 

  

LED Display  

The LED display consisted of 5 groupings of 9 LEDs arranged in a grid with each 

grid of 9 LEDs containing LEDs of the same wavelength and the 5 groupings having 

wavelengths ranging from 640 nm to 940 nm.  Each of the groupings was powered and 

controlled by an independent Arduino Mega 2650 microcontroller that was programmed 

to supply power at 5V (HIGH) or 0V (LOW) to each identified digital pin at specific time 

intervals.  That is to say that each of the digital pins used in the experiment were 

identified as a variable in the Arduino program code and called out via that variable in 

order to program high and low periods into the power cycles of each digital pin.  The 

effect intended by this method was the oscillation of LEDs in each grouping at defined 

frequencies every second.  The oscillations, written in milliseconds, were 500 high and 

low (1 Hz at 50% duty cycle), 25 high and 225 low (4 Hz at 10% duty cycle), or 12.5 
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high and 12.5 low (40 Hz at 50% duty cycle).  A resistor was placed in series with each 

of the LEDs to reduce the relative steady-state power output of each LED to near the 

same level.  This was consistent for each LED group except for the 640 nm grouping, 

which was reduced until the intensity of the light output was low enough for a participant 

to focus on the light without feeling the urge to blink continuously.  

 
Figure 6 - 640nm LEDs at 3mW 
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Figure 7 - 640nm LED at 50nW 

Although the LEDs were grouped together, only the center LED was actively 

powered during the experiment.  One LED was used, vice the entire LED grouping, in the 

experiment because overt attention has been shown to result in stronger ERP responses in 

human subjects than covert attention (Treder & Blankertz, 2010).  Each of the 640nm 

LEDs output approximately 50 nW of optical power with 10 kΩ resistors in series as 

measured by using a Coherent Fieldmaster in a dimly lit room and with the LED placed 

beneath the measurement hood of the instrument.  This produced a luminance of 

approximately 79 cd/sq m when measured with a photometer from a point approximately 

perpendicular to the LED substrate.   
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Table 1 - Peak wavelengths and resistor values of LEDs used in experiment 

Peak 
Wavelength 

(nm) 

Spectral 
Bandwidth 

(nm) 

Product ID 
Number 

Manufacturer Resistor 
Used 

640 Not noted 297 Adafruit Industries 10 kΩ 

770 25 MTE1077N1-R Marktech 

Optoelectronics 

330 Ω 

810 40 MTE2081-OH5 Marktech 

Optoelectronics 

220 Ω 

830 40 TSHG8200 Vishay 

Semiconductors 

370 Ω 

940 45 IR333-A Everlight 220 Ω 

 

The 770 nm, 810 nm, 830 nm, and 940 nm groupings’ outputs were 

approximately 3 mW with 330 Ω, 220 Ω, 370 Ω, and 220 Ω resistors in series 

respectively.  Each of the LEDs was measured with the Coherent Fieldmaster to 

determine a baseline power output from which they could be modulated.  It was 

anticipated that the changes in the output of the LEDs would follow  𝑃𝑃𝑃𝑃 = 𝐷𝐷𝑝𝑝
𝑇𝑇

  (where Po 

is power output, Dp is duty cycle of the pulse, and T is the period of the signal) and result 

in lower current and power output as the duty cycle was decreased from 100% to 10%. 
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Figure 8 - Coherent Fieldmaster Power Measurement Device 

The Arduino Mega 2650 microcontroller has 54 digital input/output pins (of 

which 15 can be used as PWM outputs), 16 analog inputs, a USB connection, and a 

power jack being used in this research.  Power was supplied to the microcontroller by 

using a 12V power supply, and the regulator on the microcontroller reduced this voltage 

to provide 5V outputs to each circuit board for the experiment.  All electric leads from 

the breadboard were powered at 5V with a maximum current of 100 mA.  
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Figure 9 - Arduino Mega 2560 Microcontroller 

The microcontroller was also interfaced to the Biopac MP150 to provide a timing 

signal indicating the onset of the flickering source.  The timing signal facilitated the 

segmentation of EEG data, which isolated the EPOCHS within the human participant 

data at which a VECP was expected. Care was also taken to ensure the electrical 

limitations of the microcontroller were not exceeded.  

Data Collection Equipment and Setup 

In addition to the LED display as an external stimulus, there were components of 

the experiment that facilitated the collection and processing of data to identify the effects 

of the stimulus on the participant.  These elements were the BIOPAC MP150 data 

acquisition system shown in Figure 10 and the EEG CAP100C. 
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Figure 10 - BIOPAC MP150 

The BIOPAC MP150 data acquisition system consisted of 15 digital signal 

amplifiers, each represented by its own channel in the data acquisition software and 

connected to the data analysis laptop via ethernet cable.  The data acquisition system was 

powered by a 12V wall-plugged power supply, which introduced line noise into the 

signal at 60 Hz.  However, the risk of this line noise impacting the experiment was 

avoided by oscillating the visual stimuli at frequencies a minimum of 20 Hz lower than 

the line noise.  Additionally, bandpass filters were used to remove the observations of 

noise above 50 Hz from the signal data before analysis.  The signal data was amplified 

and then recorded in the Acknowledge 4.0 software to give the investigator realtime 

feedback of the data collection so that visible errors in the data collection could be 

captured and resolved.  A sample of the data collected through the Acknowledge software 

is shown in Figure 11. 
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Figure 11 - Sample Filtered EEG Recording from Acknowledge Software 

Additionally, the Acknowledge 4.0 software allowed the investigators to reduce the risk 

of data collection errors and incompatabilies with other programs because it allowed the 

investigators to record data and save it with the MATLAB file extension, specifically, 

and other file extensions.  MATLAB would serve as the primary means of signal data 

analysis, so files were saved with its file extension.   

In order to transmit the participant’s signal data to the data acquisition system, the 

EEG CAP100C electrode cap was used as shown in Figure 12. 
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Figure 12 - CAP100C Electrode Cap 

The electrode cap has preplaced electrodes installed at set intervals around the cap 

and connects to the data acquisition system via a wiring harness that is prewired with 

color coded wires that correspond to electrodes that are installed into the electrode cap.  

This electrode placement is based on the International EEG 10 – 20 Electrode Placement 

configuration, which spatially defines the locations for each electrode based on 

measurements of the participants’ skull and relative distances between adjacent 

electrodes based on them being placed either 10% or 20% of the measured distance from 

nasion to inion and ear to ear.  
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Figure 13 - International EEG 10 - 20 scalp electrode placement with experiment 

collection locations identified (Fz, Cz, Pz, O1, O2 with linked mastoid reference) 

 

Experimental Procedure 

 The participants were seated in the chair used for the length of the experiment for 

their experiment preparation.  To prepare the participant for the experiment, the 

investigator provided a written description of the experiment and explained each step of 

the experiment preparation and execution to the participants.  Next, the participant’s skull 

was measured from nasion to inion and the circumference of the skull was measured.  

Additionally, the participants scrubbed their left and right mastoids with an abrasive pad, 

then wiped both areas with alcohol pads.  After the mastoid areas were cleaned, the 

investigator used a cotton swab to apply Nuprep skin preparation gel to the mastoid areas 

and applied one electrode to each mastoid with additional conductive electrode gel.  

These electrodes served as the reference for the EEG.  After the electrodes were applied 
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to the mastoid areas, the participant used an alcohol pad to clean the areas directly above 

and below their right eye.  Nuprep skin preparation gel was then applied to the areas 

directly above and below the participant’s right eye and one electrode was applied to each 

location with conductive gel.  This electrode was used to measure a vertical 

electrooculogram (EOG) signal, which was used to identify eye blinks during the 

experiment.  After the electrodes were placed, the impedance at each location was 

verified to be below 10kΩ at EOG electrode locations and 5kΩ at EEG electrode 

locations with the BIOPAC EL-CHECK electrode impedance checker. 

 

Figure 14 - BIOPAC Brand Electrode Impedance Checker 

After verifying the impedances at the previous locations, the electrode cap, 

chosen based on previous skull measurement, was placed on the participant’s head 

ensuring that the Cz electrode was placed in the center of the measured distance between 

the participant’s nasion and inion.  Next, a blunt tipped syringe was used to abrade the 
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scalp and apply electrode gel at GND, Fz, Cz, Pz, O1, and O2, and the impedance was 

verified to be below 5 kΩ at each location.  After the impedances were verified, the data 

acquisition system was powered on, and the participant was asked to complete a series of 

tasks (i.e., clench teeth, blink, and close eyes) to verify the system was capturing 

expected activity before beginning the experiment.  

The experiment was divided into three tasks, conducted against each of the LED 

display types, with independent goals, and each task was followed by a 15 second break 

before beginning the next task.  Additionally, data collection for each display type started 

with a 65 second period recording of baseline activity in which the participant was seated 

still, and quietly while staring at the LED display while it was not actively powered.  

After the baseline period elapsed, the user was given a 15 second break, then the first task 

in the experiment was started.  After the baseline period, each task was completed using 

the 640nm first, then proceeding to progressively longer wavelengths until completing 

the experiment with the 940 nm LED display.  The first task was designed to saturate the 

participant’s visual field with the target stimuli and elicit a time-based cortical response 

to the onset of the target stimuli.  The target stimuli were oscillated at a 1 Hz frequency 

by modulating the width of each pulse at 500 milliseconds on and 500 milliseconds off 

each second.  This cycle continued for approximately two minutes to capture up to 125 

events to calculate the mean amplitude of the components over the range of events for 

each LED stimulus.  The number of events was necessary to reduce the size of noise the 

average of events as reflected in the function (1/√N) x R where N is the number of events 

and R is the amount of noise in a single trial (Luck, 2005b).  The impact of this function 

is that it may take 9 trials to triple the signal to noise ratio in a given experiment (by √9 = 
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3).  A digital timing signal was transmitted directly from the microcontroller to the data 

acquisition system at each onset of the target stimuli.  

 The second task was designed to elicit a cortical response by using a target 

steady-state oscillating frequency of 4 Hz for the target stimuli. The target stimuli were 

on for 25 milliseconds and off for 225 milliseconds, 4 times in each second.  This cycle 

continued for 1 minute, before the 15-second break was reached.  A digital timing signal 

was transmitted directly from the microcontroller to the data acquisition system at every 

fourth onset of the target stimuli, starting with the first onset (i.e., 1, 5, 9…).  After 

completing the experiment, the oscillating frequency of the target LED was determined to 

be approximately 4.3 Hz. 

 The third task was designed to elicit a cortical response using a steady-state 

frequency beyond the anticipated Critical Fusion Frequency (CFF) of 40 Hz for the target 

stimuli. The target stimuli were on for 12.5 milliseconds and off for 12.5 milliseconds 40 

times each second for 1 minute before the end of task set for each display.  A digital 

timing signal was transmitted directly from the microcontroller to the data acquisition 

system at every fortieth onset of the target stimuli, starting with the first onset (i.e., 1, 41, 

81…).  After completing the experiment, the oscillating frequency of the target LED was 

determined to be approximately 39.8 Hz. 

Initial Methods 

The initial attempts to conduct Power Spectral Density (PSD) analysis on the data 

collected from experiments were based on code that attempted to identify the relative 

power captured at each frequency across the entire 60 second trials and was anticipated to 



43 

reveal an increase in 4 Hz power with harmonic features occurring at 8 Hz and 12 Hz.  

However, the power increase seemed to be most dense at 8 Hz and 12 Hz in the Occipital 

region.  This method did reveal responses that may have been generated by the target 

stimuli; however, the signal was mostly obscured by noise and other methods to reduce 

noise and extract the signal were pursued. 

 

Figure 15 - Initial PSD Plots against sample 4 Hz Trial 

The same approach was used at 50 Hz and appeared to show a response at the 

target frequency without additional power increases at other frequencies presented in 

earlier trials (i.e., 4 Hz).  The line noise encountered at 60 Hz due to the data acquisition 

system power supply became apparent through this approach. 
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Figure 16 - Initial PSD Analysis against sample 50 Hz trial 

 Next, a Complex Morlet Wavelet was convolved with the EEG signal data at the 

integer frequencies from 2-25 Hz.  This band passes the data and returns the time-series 

power of that frequency as the square of the absolute value of the complex signal.  The 

following figure is an example of the result at 8 Hz example.  

 

Figure 17 - Morlet Wavelet Convolution at 8 Hz for example 
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Next, the average power at each frequency was taken for both the baseline and trial data, 

and the decibel changes were computed for all frequencies, and plotted in the Figure 18.  

 

Figure 18 - Decibel change in power between sample trial and baseline periods 

 In the 4 Hz trial both O1 and O2 reveal power increases around 4 Hz and its 

harmonics around 8 Hz, 12 Hz and 16 Hz.   

Final Methods  

The data acquisition system and Acknowledge software were used for signal data 

acquisition.  The MATLAB software (code attached in Appendix A) was used to 

complete the signal data processing (i.e., epoching, averaging, & spectral density 

analysis) and noise reduction through signal averaging and blink removal. 

In Task 1, the data collected from each participant was segmented into at least 87, 

1-second epochs to produce plots of each time-based ERP in Microsoft Excel and 

MATLAB for visual inspection and measurement of the ERP.  Epochs were removed 
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when blinks were indicated by a vertical EOG signal which exceeded 250 μV.  Because 

the neural activity is time-locked to the stimulus, the occurrence of activity post stimulus 

onset reflects the participant’s response to the stimulus; however, it was necessary to 

identify additional criteria to objectively determine the presence of the response.   

Qualitative measures of the response’s validity include visual comparison of the 

pre-stimulus period and post-stimulus period and their associated voltage deflections for 

each participant.  The voltage deflections were compared to determine if the activity 

measured from the two periods is different.  If there was a significant difference in 

magnitude of the signal compared to the noise, the response was assumed to be valid and 

not valid otherwise.  To support the determination of response validity, the root-mean-

square (RMS) of the pre-stimulus (samples from 200 ms before the onset of stimuli to 

stimuli onset) and post-stimulus (samples from onset of stimuli to 500 ms after onset of 

stimuli) periods of the 1 Hz task are calculated to provide unbiased estimates of the 

variance of the neural activity for both periods.  The RMS values are calculated using the 

following equation:  

𝑹𝑹𝑹𝑹𝑹𝑹 =  �∑ (𝒚𝒚�𝒕𝒕−𝒚𝒚𝒕𝒕)𝒏𝒏
𝒕𝒕=𝟏𝟏

𝟐𝟐

𝒏𝒏
      ( 1 ) 

Where 𝑦𝑦�𝑡𝑡 is the expected voltage (V) of each sample (equaling zero), 𝑦𝑦𝑡𝑡 is the measured 

voltage of each sample, and 𝑛𝑛 is the number of samples (1401) measured in the 700 ms 

window.  

The resultant pre-stimulus and post-stimulus RMS values are compared to one 

another (Equation 2) to provide a ratio of the participant’s neural response to the stimulus 

and their baseline activity that evaluates each deflection of the activity and not just the 
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positive or negative deflections.  This ratio, where ST is the RMS value obtained from the 

post-stimulus data points and SB is the RMS value from pre-stimulus data points, is used 

to determine a signal-to-noise ratio that accurately reflects the sum of measured brain 

activity at the subject electrode.  A signal-to-noise ratio of 1.5 or higher was said to 

support a claim of response validity and a lower signal-to-noise ratio supported claiming 

the lack of a response to the stimuli.  

𝑆𝑆𝑆𝑆𝑆𝑆 =  𝑆𝑆𝑇𝑇
𝑆𝑆𝐵𝐵

       ( 2 ) 

Before analysis, the neural signal data from Task 1 was segmented into 700 ms 

epochs (200 ms before to 500 ms after onset of stimuli) each second over the length of 

the task by referencing the digital event timing signal triggered by the microcontroller.  

That is, the epochs represent the neural signal data from the initial onset of the visual 

stimuli (e.g., at time = 0) to the next onset of the visual stimuli (e.g., at time = 1000 ms) 

for 87 – 125 epochs.  These epochs were then averaged across the trials that were not 

obstructed by blinks.  This segmentation and averaging process is reflected in Figure 19.  
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This process was used to generate outputs for all collected scalp locations, but only data 

referenced from O1 and O2 were used to conduct data analysis. 

 

Figure 19 - Depiction of Segmentation and Averaging Method 

Data collected from Task 2 and Task 3 followed a similar segmentation processes 

as Task 1; however, the neural signal data collected from each participant in each, Task 2 

and Task 3, was segmented into 65 3-second epochs.  The epochs were collected at every 

4th onset of the stimuli (Task 2) and every 40th onset of the stimuli (Task 3) from the 

initial onset of the visual stimuli to the final offset of the visual stimuli (each epoch either 

overlapped or was overlapped by another).  These epochs were averaged after removing 

the first 3 and last 3 samples removed to capture the centralized response for each 

participant (i.e., it was assumed that the participants could require up to 3 seconds to 

adjust to the stimuli and control blinking), and there were no blinks removed from 

samples in Tasks 2 and 3.  The neural signal data was processed using spectral density 

analysis to examine the power as a function of frequency for each participant.  In BCI 
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applications the window of frequencies analyzed for response are usually specific to the 

range of frequencies used in the experiment; however, a wider window was used in this 

experiment to evaluate a larger field of frequency band powers reflected in the 

measurements.  Additionally, to emphasize the response occurring across the visual 

cortex and normalize the measurements, the frequency powers measured at O1 and O2 

were multiplied together, multiplied by the frequency at which the power was observed, 

and divided by the maximum measured frequency power.  The power associated with the 

frequency spectrum of EEG data may decrease as the frequency is increased and follow a 

1/f power scaling, where f is the frequency at which the power is observed (Cohen, 

2014). Therefore, the frequency powers are multiplied by the associated frequencies to 

account for the power scaling.  Additionally, normalizing the amplitudes of the frequency 

data facilitated the comparison of power data against the same scales. 

The goal for Task 2 was to identify the target stimuli frequency of approximately 

4.3 Hz or its first harmonic as the predominant frequency band powers in the subject trial.  

However, if the frequency power did not rise to at least 0.4 in amplitude, the response 

was determined to be commensurate to noise and not an elicited signal.   

In Task 3, the goal was to identify the target stimuli frequency of approximately 39.8 

Hz as either the predominant or secondary frequency band power above 0.4 in amplitude 

(below 0.4 was determined to be commensurate with noise) in the subject trial.  The 

frequency window used for analysis did not include the range of potential harmonic 

features, so the target stimuli frequency was the only frequency evaluated. 
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IV.  Analysis and Results 

Chapter Overview 

This chapter will provide a collection of results derived from the analysis of the 

signal data collected from each participant in this research effort.  The analysis of the 

signal data follows the methods outlined in Chapters II and III.  Additionally, the results 

are displayed in the order in which each of the 3 tasks occurred and the data from each of 

the participants is grouped together for each task.  

Results of Simulation Scenarios 

Task 1 – 1 Hz Condition  

In task 1, the signal data from each participant was filtered using a low pass finite 

impulse response (FIR) filter with a passband frequency of 15 Hz, stopband frequency of 

20 Hz, passband ripple of 0.5 dB, and stopband attenuation of 65 dB.  The time-locked 

responses, for each participant and target stimuli (640 nm – 940 nm), from this task are 

reflected in the figures which follow in the next section of this report.  Additionally, a 

grand average for the group has been produced, and it highlights the trend of responses 

occurring between 100 to 200 ms after the onset of the target stimuli at time zero.  

However, it is worth noting that the grand average reduces the variance in responses seen 

across participants, but it is useful for highlighting the consistency based on the latency 

of the responses for each participant.  The table below is intended to highlight each 

participant’s observation of illumination and flicker from the target stimuli.  A table will 

precede each of the analysis sections to identify participant observations of the target 

stimuli.  The data in these tables is used to determine if there is a correlation between the 
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observations and the resultant ERPs and frequency powers collected from each 

participant and task.  Table 2 reflects each participant observed both illumination and 

flicker in the 640 nm portion of Task 1. 

Table 2: Participants observation of stimuli at 640 nm portion of Task 1 

Participant Number Observed Illumination Observed Flicker 

P001 Yes Yes 

P002 Yes Yes 

P003 Yes Yes 

P004 Yes Yes 

P005 Yes Yes 

P006 Yes Yes 

 

Task 1 – 640 nm 

 In Figure 20, the Grand Average of the measured ERPs demonstrates the 

overarching responses with latencies of approximately 100 ms to 250 ms after the onset 

of the visual stimuli.  The noise from the pre-stimulus baseline is low relative to the 

averaged peak response in the ERP which has an amplitude near 3 μV. 
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Figure 20 - Grand average across participants for 640nm portion of Task 1 

Figure 21 demonstrates that ERPs were captured in each of the participants from 

this task and the latency of the response for each participant was identified between 

approximately 100 and 250 ms after the onset of the target stimuli.  The responses 

measured at each location, O1 and O2, were synchronized even though there was 

variation between the voltage measurements.  Examination of each participant 

demonstrates a response to the stimuli.  The SNRs for participant 1 were 3.15 (O1) and 

4.43 (O2), participant 2 were 2.42 (O1) and 3.98 (O2), participant 3 were 3.49 (O1) and 

3.87 (O2), participant 4 were 1.70 (O1) and 2.89 (O2), participant 5 were 2.07 (O1) and 

1.85 (O2), and participant 6 were 4.52 (O1) and 4.74 (O2).  The SNRs suggest relatively 

(compared to pre-stimulus period) pronounced response to the onset of the target stimuli.  
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Additionally, the peak amplitude of the response is greater than 2μV for each participant 

in this task. 

  

  

  

Figure 21 - Task 1: ERPs for each participant to the 1Hz, 640 nm target stimuli 
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Task 1 – 770 nm 

  
Each participant observed both illumination and flicker of the LED in the 770 nm 

portion of Task 1.  The participant observations are reflected in Table 3. 

Table 3: Participant target stimuli observations at 770 nm 

Participant Number Observed Illumination Observed Flicker 

P001 Yes Yes 

P002 Yes Yes 

P003 Yes Yes 

P004 Yes Yes 

P005 Yes Yes 

P006 Yes Yes 

 

The Grand Average in Figure 22 demonstrates relatively low noise in the pre-

stimulus baseline period relative to the peak voltage measured in the ERP.  The average 

latency of the main component was approximately 200 ms after the onset of the stimuli 

and has a peak amplitude near 4μV.  
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Figure 22 - Task 1: Grand average across participants for 770 nm portion of Task 1 

Figure 23 demonstrates that the ERPs captured from each of the participants from 

this task had latencies of approximately 100 and 250 ms after the onset of the target 

stimuli.  The responses measured at each location, O1 and O2, were predominately 

synchronized even though there was variation between the voltage measurements and 

slight variation between the phase of some O1 and O2 measured components, and each 

participant demonstrates a response to the stimuli.  The SNRs for participant 1 were 2.29 

(O1) and 2.64 (O2), participant 2 were 2.84 (O1) and 3.36 (O2), participant 3 were 8.42 

(O1) and 6.98 (O2), participant 4 were 4.48 (O1) and 4.68 (O2), participant 5 were 4.19 

(O1) and 3.58 (O2), and participant 6 were 3.89 (O1) and 2.93 (O2).  The SNRs suggest 

relatively (compared to pre-stimulus period) pronounced response to the onset of the 

target stimuli.  Additionally, the peak amplitude is greater than 2μV for each participant 

in this task.  Participant 2 appears to have a lower response at O1 than O2; however, there 

is clearly a response at O2. 
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Figure 23 - Task 1: ERPs for each participant to the 1Hz, 770 nm target stimuli 

 

Task 1 – 810 nm 

Each participant observed both illumination and flicker of the LED in the 810 nm 
portion of Task 1.  The participant observations are reflected in Table 4. 
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Table 4: Participant observations of 810 nm target stimuli in Task 1 

Participant Number Observed Illumination Observed Flicker 

P001 Yes Yes 

P002 Yes Yes 

P003 Yes Yes 

P004 Yes Yes 

P005 Yes Yes 

P006 Yes Yes 

 
 
Figure 24 demonstrates the Grand Average of ERPs measured across participants 

in the 810 nm portion of Task 1.  It reveals an indication of responses with latency 

between 200 ms and 300 ms after the onset of the stimuli; however, it also reveals that 

the amplitude, maximum near 1μV, of the responses have decreased considerably with 

the brightness of the visual spectrum associated with the stimuli.   
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Figure 24 - Task 1: Grand average across participants for 810nm portion of Task 1 

Figure 25 demonstrates the preponderance of the participants did not have 

responses distinguishable from the pre-stimulus baseline.  The lacking responses are 

indicated by the level of noise being nearly the same in the pre-stimulus baseline and the 

post-stimulus periods.  The exception was Participant 4 who had a considerable increase 

in activity from approximately 100 ms to 300 ms after the onset of the stimuli with a peak 

amplitude higher than 2μV in response to the stimuli.    The responses measured at each 

location, O1 and O2, were predominately synchronized even though there was variation 

between the voltage measurements and slight variation between the phase of some O1 

and O2 measured components.  The SNRs for participant 1 were 1.04 (O1) and 1.85 

(O2), participant 2 were 1.21 (O1) and 1.23 (O2), participant 3 were 0.63 (O1) and 1.32 

(O2), participant 4 were 4.47 (O1) and 4.70 (O2), participant 5 were 1.99 (O1) and 1.45 

(O2), and participant 6 were 0.70 (O1) and 0.68 (O2).  Additionally, the peak amplitudes 

of the component waveforms are less than 1.5 μV for all participants except participant 4.  
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The target stimuli were much more difficult for each participant to observe and attend to 

during this task, and this may have contributed to the lacking responses across 

participants in this task. 

  

  

  

Figure 25 - Task 1: ERPs for each participant to the 1Hz, 810 nm target stimuli 
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Task 1 – 830 nm 

Each participant observed both illumination and flicker of the LED in the 830 nm 

portion of Task 1.  The participant observations are reflected in Table 5. 

Table 5: Participant observations of 830 nm target stimuli in Task 1 

Participant Number Observed Illumination Observed Flicker 

P001 Yes Yes 

P002 Yes Yes 

P003 Yes Yes 

P004 Yes Yes 

P005 Yes Yes 

P006 Yes Yes 

 

The Grand Average for the 830nm portion of Task 1, Figure 26, implies there was 

a clear response across the group in this task.  It reveals pronounced components around 

100 ms to 250 ms in latency with relatively low noise.  Again, it was anticipated that the 

dimness of the stimuli would result in lower amplitudes for any measured response 

although the 830 nm stimuli was brighter than the 810 nm stimuli, it was dimmer than the 

640 and 770 nm stimuli presented in Task 1.  
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Figure 26 - Task 1: Grand average across participants for 830nm portion of Task 1 

ERPs were captured from each participant in this task (Figure 27) and the latency 

of the response for these participants was identified between approximately 100 and 250 

ms after the onset of the target stimuli.  The responses measured at each location, O1 and 

O2, were predominately synchronized even though there was variation between the 

voltage measurements.  The SNRs for participant 1 were 1.74 (O1) and 3.03 (O2), 

participant 2 were 4.99 (O1) and 6.15 (O2), participant 3 were 2.04 (O1) and 2.61 (O2), 

participant 4 were 2.21 (O1) and 2.69 (O2), participant 5 were 2.12 (O1) and 1.71 (O2), 

and participant 6 were 1.39 (O1) and 1.78 (O2).  The grand average of the waveforms 

and their SNRs suggest relatively (compared to pre-stimulus period) pronounced 

response to the onset of the target stimuli; however, the measurements at O1 and O2 for 

participants 1, 2, 4, 5, and 6 appear to be obscured by surrounding neural activity and not 

distinct with respect to the noise.  The ERPs from participants 4, 5, and 6 also appear to 

reveal a response that is not locked to the onset of the stimuli (indicated by the increase in 
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activity just before the onset of the stimuli).  There is, however, a more defined response 

for participant 3 in this task. 

  

  

  

Figure 27 - Task 1: ERPs for each participant to the 1Hz, 830 nm target stimuli 

Task 1 – 940 nm 

Each participant observed both illumination and flicker of the LED in the 940 nm 

portion of Task 1.  The participant observations are reflected in Table 6. 
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Table 6: Participant observations of 940 nm target stimuli in Task 1 

Participant Number Observed Illumination Observed Flicker 

P001 No No 

P002 No No 

P003 No No 

P004 No No 

P005 No No 

P006 No No 

 

The Grand Average of the 940 nm portion of Task 1 (Figure 28) captures neural 

activity around the onset of the stimuli that is approximately 3 times as strong at O1 as 

the pre-stimulus baseline period.  As anticipated, the amplitude of the ERP is low 

compared to the shorter wavelength stimuli, and the components of the response appear 

from approximately 50 ms to 200 ms after the onset of the stimuli without any increases 

in activity before the onset of the stimuli. 
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Figure 28 - Task 1: Grand average across participants for 940nm portion of Task 1 

ERPs (Figure 29) were captured in each of the participants from this task, and 

although the responses are sporadic, the latency of the responses for each participant 

appear to begin approximately 50 ms after the onset of the target stimuli and randomly 

diminish at O1 and O2.  The responses measured at each location, O1 and O2, were 

predominately synchronized even though there was variation between the voltage 

measurements and slight variation between the phase of some O1 and O2 measured 

components.  The SNRs for participant 1 were 1.34 (O1) and 2.31 (O2), participant 2 

were 1.75 (O1) and 2.03 (O2), participant 3 were 1.72 (O1) and 2.45 (O2), participant 4 

were 1.78 (O1) and 1.69 (O2), participant 5 were 1.99 (O1) and 1.09 (O2), and 

participant 6 were 2.88 (O1) and 3.25 (O2).  The SNRs suggest relatively (compared to 

pre-stimulus period) pronounced response to the onset of the target stimuli; however, the 

sporadic neural activity and peak amplitudes suggest the observed activity is noise and 

not responses to the target stimuli. 
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Figure 29 - Task 1: ERPs for each participant to the 1Hz, 940 nm target stimuli 

Task 2 – 4 Hz Condition 

The oscillatory responses for each participant, in task 2, were calculated by using 

spectral density analysis.  The responses for each participant were plotted referencing a 

normalized amplitude against the frequency window extending from 2 Hz to 12 Hz.  The 

normalized amplitude is used to extract the frequency containing the highest power 

density occurring over the observed period of 65 seconds, and it is represented as the 
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product of the measured power at O1 and O2, for each observed frequency, divided by 

the maximum observed power across the frequencies.  No blinks were removed from the 

data collected; however, the first 3 and last 3 epochs were removed from the data before 

analysis, in an effort to capture a centralized period in which the participant was most 

attentive to the task.  Additionally, a bandpass FIR filter with cut off frequencies of 2 Hz 

to 12 Hz were used to filter each 3 second epoch from the collected data.   

Through each trial there was at least one prototypical observation of the frequency 

band power expected at the target and harmonic frequencies (primary feature at 4 Hz and 

secondary at 8 Hz).  Additionally, each task for the group revealed responses at the 

apparent harmonic of the target frequency.  The specificity of each of the 4 Hz and 8 Hz 

responses indicates that they were exogenous responses caused by the stimuli and not 

endogenous responses resulting from internal processes in each participant.  Table 7 

depicts the frequency measured post task for each of the target stimuli, the observed 4 Hz 

response frequency, and the observed 8 Hz response frequency from the task.  The Target 

Frequency was calculated by measuring the change between approximate time hacks of 

each onset of the digital event signal and dividing the value by 4.  By dividing 1 by the 

obtained value the frequency of the target stimuli could be approximated.  Additionally, 

the frequency resolution of the spectral density windows provided in tasks 2 and 3 are 

limited to .244 Hz, therefore, the observed frequencies may be off by ± .244 Hz.  The 

aforementioned frequencies are referenced in the sections which follow this introduction.   
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Table 7: Frequencies observed during Task 2 

Target Frequency Observed 4 Hz Frequency Observed 8 Hz Frequency 

4.28 Hz 4.3945 Hz 8.5449 Hz 

 

Task 2 – 640nm 

 Both flicker and illumination were observed by each participant in the 640nm 

portion of Task 2.  The participant observations are annotated in Table 8. 

 

Table 8: Participant observation of 640 nm target stimuli in Task 2 

Participant Number Observed Illumination Observed Flicker 

P001 Yes Yes 

P002 Yes Yes 

P003 Yes Yes 

P004 Yes Yes 

P005 Yes Yes 

P006 Yes Yes 

 

Although Participant 3 was the only participant to have a predominant increase in 

power at the target frequency (approximately 4.3 Hz), participants 2, 4, and 6 also had 

predominant increases in power at approximately twice the target frequency (8.5 Hz).  
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The observed power at approximately 8 Hz may represent harmonics of the 4 Hz target 

frequency because it occurs at approximately an integer multiple (approximately 8.5 Hz) 

of the target frequency of 4.4 Hz.  Additionally, the observed increase at 8 Hz occurs at 

exactly the same frequency across participants. The increased 8 Hz activity does not 

preclude the observed power increase at the target stimuli from being considered a 

positive response to the target stimuli.  Figures 30 and 31, below, compares the baseline 

measure of frequency band power at the same frequencies from the 1 Hz task to the 4 Hz 

task.  The baseline measures were epoched and averaged in the same manner as the 4 Hz 

task period.  The intent of this figure is to show the target frequencies are not present in 

other trials for the participant.  Participant 5 is the only participant who has an amplitude 

that appears to peak near the targeted frequencies in the baseline period, and it is actually 

peaking at 9 Hz. 
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Figure 30 - Task 2: Normalized PSD for Participants 1 - 3 for the 4Hz 640nm target 

stimuli compared to baseline 
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Figure 31 - Task 2: Normalized PSD for Participants 4 - 6 for the 4Hz 640nm target 

stimuli compared to baseline 

Task 2 – 770nm 

Both flicker and illumination were observed by each participant in the 770nm 

portion of Task 2.  The participant observations are annotated in Table 9. 
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Table 9: Participant observations of 770 nm target stimuli in Task 2 

Participant Number Observed Illumination Observed Flicker 

P001 Yes Yes 

P002 Yes Yes 

P003 Yes Yes 

P004 Yes Yes 

P005 Yes Yes 

P006 Yes Yes 

 

The participants to see a predominant increase in power at the target frequency 

(approximately 4.3 Hz) were participants 2 and 3; however, Participant 5 also had an 

observed increase in power at the target frequency at a lower amplitude than the 8 Hz 

power increase.  Participants 1, 4, 5, and 6 had a predominant increase in power at the 

same frequency, 8.5 Hz.  Participants 2 and 3 also had secondary power increases at 8.5 

Hz.  The observed power at approximately 8.5 Hz may represent harmonics of the 4.4 Hz 

target frequency because it occurs at approximately an integer multiple of the target 

frequency. Figures 32 and 33, below, compare the baseline measure of frequency band 

power at the same frequencies from the 1 Hz task to the 4 Hz task.  The baseline 

measures were epoched and averaged in the same manner as the 4 Hz task period.  The 

intent of these figures is to show the target frequencies are not present in other trials for 

the participant.  In the baseline for Participant 3, the increase in power near 8 Hz is at 

approximately 8.1 Hz. 



72 

  

  

  

Figure 32 - Task 2: Normalized PSD for Participants 2 - 3 for the 4Hz 770nm target 

stimuli compared to baseline 
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Figure 33 - Task 2: Normalized PSD for Participants 4 - 6 for the 4Hz 770nm target 

stimuli compared to baseline 

Task 2 – 810nm 

Both flicker and illumination were observed by Participant 2 but not by 

participants 1, 3, 4, 5, and 6 in the 810nm portion of Task 2.  The participant observations 

are annotated in Table 10. 
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Table 10: Participant observations of 810 nm target stimuli in Task 2 

Participant Number Observed Illumination Observed Flicker 

P001 No No 

P002 Yes Yes 

P003 No No 

P004 No No 

P005 No No 

P006 No No 

 

The only participant to see a predominant increase in power at approximately the 

target frequency was Participant 4.  Participants 1 and 5 had predominant power increases 

at approximately 8.5 Hz and Participant 4 also had a secondary increase at approximately 

8.5 Hz.  Participants 2 and 6 did not have an observed power increase around either the 

target frequency or its harmonic.  Figures 34 and 35, below, compare the baseline 

measures of frequency band power at the same frequencies from the 1 Hz task to the 4 Hz 

task.  The baseline measures were epoched and averaged in the same manner as the 4 Hz 

task period.  The intent of this figure is to show the target frequencies are not present in 

other trials for the participant.  The baseline, again, reflects that no occurrences of either 

the target frequency or its harmonic exist before the 4 Hz target stimuli were presented. 
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Figure 34 - Task 2: Normalized PSD for Participants 1 - 3 for the 4Hz 810nm target 

stimuli compared to baseline 
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Figure 35 - Task 2: Normalized PSD for Participants 4 - 6 for the 4Hz 810nm target 

stimuli compared to baseline 

Task 2 – 830 nm 

Both flicker and illumination were observed by each participant in the 830nm 

portion of Task 2.  The participant observations are annotated in Table 11. 
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Table 11: Participant observations of 830 nm target stimuli in Task 2 

Participant Number Observed Illumination Observed Flicker 

P001 Yes Yes 

P002 Yes Yes 

P003 Yes Yes 

P004 Yes Yes 

P005 Yes Yes 

P006 Yes Yes 

 

The only participants to see a predominant increase in power at the target 

frequency were participants 4 and 6; however, there was also a large increase in power at 

and the target frequency for Participant 3.  Additionally, participants 1 and 3 had primary 

power increases at approximately 8.5 Hz.  The observed power at approximately 8 Hz 

may represent harmonics of the 4 Hz target frequency because it occurs at approximately 

an integer multiple (approximately 8.5 Hz) of the target frequency of 4.3 Hz.  Figures 36 

and 37, below, compare the baseline measures of frequency band power at the same 

frequencies from the 1 Hz task to the 4 Hz task.  The baseline measures were epoched 

and averaged in the same manner as the 4 Hz task period.  The intent of this figure is to 

show the target frequencies are not present in other trials for the participant.  The 

baseline, again, reflects that no occurrences of either the target frequency or its harmonic 

exist before the 4 Hz target stimuli were presented. 
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Figure 36 - Task 2: Normalized PSD for Participants 1 - 3 for the 4Hz 830nm target 

stimuli compared to baseline 
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Figure 37 - Task 2: Normalized PSD for Participants 3 - 6 for the 4Hz 830nm target 

stimuli compared to baseline 

Task 2 – 940nm 

Neither flicker nor illumination were observed by any participant in the 940 nm 

portion of Task 2.  The participant observations are annotated in Table 12. 
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Table 12: Participant observations of 940 nm target stimuli in Task 2 

Participant Number Observed Illumination Observed Flicker 

P001 No No 

P002 No No 

P003 No No 

P004 No No 

P005 No No 

P006 No No 

 

The only participant to see a predominant increase in power at the target 

frequency was Participant 2; however, there was predominant increase in power at 

approximately 8 Hz for Participant 3.  Additionally, participants 2 and 5 had secondary 

increases in 8 Hz power.  The observed power at approximately 8 Hz may represent 

harmonics of the 4 Hz target frequency because it occurs at approximately an integer 

multiple (approximately 8.5 Hz) of the target frequency of 4.3 Hz.  Figures 38 and 39, 

below, compare the baseline measures of frequency band power at the same frequencies 

from the 1 Hz task to the 4 Hz task.  The baseline measures were epoched and averaged 

in the same manner as the 4 Hz task period.  The intent of this figure is to show the target 

frequencies are not present in other trials for the participant.  The baseline, again, reflects 

that no occurrences of either the target frequency or its harmonic exist before the 4 Hz 

target stimuli were presented. 
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Figure 38 - Task 2: Normalized PSD for Participants 1 - 3 for the 4Hz 940nm target 

stimuli compared to baseline 
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Figure 39 - Task 2: Normalized PSD for Participants 3 - 6 for the 4Hz 940nm target 

stimuli compared to baseline 

Task 3 – 40 Hz Condition 

  The oscillatory responses for each participant, in Task 3, were calculated by using 

PSD analysis.  The responses for each participant were plotted referencing a normalized 

amplitude against the frequency window extending from 30 Hz to 50 Hz.  The 

normalized amplitude is used to extract the frequency containing the highest power 
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density occurring over the observed period of 65 seconds, and it is represented as the 

product of the measured power at O1 and O2, for each observed frequency, divided by 

the maximum observed power across the frequencies.  The data collected from Task 3 

was collected using a bandpass FIR filter with cutoff frequencies of 30 Hz to 50 Hz.  The 

first and last 3 epochs were removed from the collected data to capture a centralized 

period in which the participant was most attentive to the task, and no epochs were 

removed because of blinks.  Table 13 identifies the target frequency measured in this task 

and observed frequency response near the target frequency.  The frequency resolution of 

the spectral density windows provided in Task 3 are limited to .244 Hz, therefore, the 

observed frequencies may be off by ± .244 Hz.  Although it was not always the 

predominant observed frequency band power, the observed frequency occurred at every 

wavelength of Task 3 across participants.   

Table 13: Target and Observed Frequencies from Task 3 

Target Frequency Observed Frequency 

39.76 Hz 39.795 Hz 

 

Task 3 – 640nm 

 Only illumination, and not flicker, was observed by each participant in the 640nm 

portion of Task 3.  The participant observations are annotated in Table 14. 
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Table 14: Participant observations of 640 nm target stimuli in Task 3 

Participant Number Observed Illumination Observed Flicker 

P001 Yes No 

P002 Yes No 

P003 Yes No 

P004 Yes No 

P005 Yes No 

P006 Yes No 

 

Figure 40 depicts the frequency band powers observed for each participant in the 

640 nm portion of Task 3.  The only participants to see an increase in power at the target 

frequency were participants 1, 2, 3, 5, and 6.  Participant 2 was the only participant, who 

had a response at 40 Hz, to not have a predominant increase in power at the target 

frequency.   
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Figure 40 - Task 3: Normalized PSDs for each participant to the 40 Hz, 640nm 

target stimuli 
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Task 3 – 770 nm 

 Only illumination, and not flicker, was observed by each participant in the 770 

nm portion of Task 3.  The participant observations are annotated in Table 15. 

  

Table 15: Participant observations of 770 nm target stimuli in Task 3 

Participant Number Observed Illumination Observed Flicker 

P001 Yes No 

P002 Yes No 

P003 Yes No 

P004 Yes No 

P005 Yes No 

P006 Yes No 

 

Figure 41 depicts the frequency band powers for the 770nm portion of Task 3.  

The only participants to see an increase in power at the target frequency were participants 

1, 3, 4, 5, and 6, and participants 4 and 5 were the only participants to have their 

predominant response measured at 40 Hz.  Participants 1, 3, and 6 had responses 

observed at 40 Hz; however, the responses were relatively low.     
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Figure 41 - Task 3: Normalized PSDs for each participant to the 40 Hz, 770nm 

target stimuli 
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Task 3 – 810nm 

Only illumination, and not flicker, was observed by participants 1, 2, and 4 in the 

810 nm portion of Task 3.  Participants 3, 5, and 6 did not observe illumination from the 

target stimuli.  The participant observations are annotated in Table 16. 

Table 16: Participant observations of 810 nm target stimuli in Task 3 

Participant Number Observed Illumination Observed Flicker 

P001 Yes No 

P002 Yes No 

P003 No No 

P004 Yes No 

P005 No No 

P006 No No 

 

Figure 42 depicts the frequency band powers for each participant from the 810 nm 

portion of Task 3.  The only participants to see an increase in power at the target 

frequency were participants 1, 2, 3, and 6.  No participants had a predominant response 

observed at the target frequency.  Participants 1, 3, and 6 had responses observed at the 

target frequency; however, the responses were relatively low.   



89 

  

  

  

Figure 42 - Task 3: Normalized PSDs for each participant to the 40 Hz, 810nm 

target stimuli 

Task 3 – 830 nm 

 Only illumination, and not flicker, was observed by participants 1, 2, 3, 4, and 5 

in the 830nm portion of Task 3.  Participant 6 observed both illumination and flicker 

from the target stimuli.  The participant observations are annotated in Table 17. 
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Table 17: Participant observations of 830 nm target stimuli in Task 3 

Participant Number Observed Illumination Observed Flicker 

P001 Yes No 

P002 Yes No 

P003 Yes No 

P004 Yes No 

P005 Yes No 

P006 Yes Yes 

 

Figure 43 depicts the frequency band powers for each participant from the 830nm 

portion of Task 3.  The only participants to see an increase in power at the target 

frequency were participants 1, 2, 4, and 5.  Only Participant 5 had a predominant 

response observed at the target frequency, and Participant 2 also had a strong response at 

the target frequency.  Participants 1 and 4 had responses observed at 40 Hz; however, the 

responses were relatively low.   
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Figure 43 - Task 3: Normalized PSDs for each participant to the 40 Hz, 830nm 

target stimuli 

Task 3 – 940nm 

 No participant observed either illumination or flicker in the 940nm portion of 

Task 3.  The participant observations are annotated in Table 18. 
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Table 18: Participant observations of 940 nm target stimuli in Task 3 

Participant Number Observed Illumination Observed Flicker 

P001 No No 

P002 No No 

P003 No No 

P004 No No 

P005 No No 

P006 No No 

 

Figure 44 depicts the frequency band powers for each participant from the 940 nm 

portion of Task 3.  The only participants to see an increase in power at approximately 40 

Hz were participants 2, 3, and 4.  No participants had a predominant response at 40 Hz, 

and participants 2, 3, and 4 had relatively low responses observed at 40 Hz.   
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Figure 44 - Task 3: Normalized PSDs for each participant to the 40 Hz, 940nm 

target stimuli 

Summary 

In analyzing the time-locked ERPs for across the group of participants it is 

apparent that ERPs can be generated in the visual cortex by using stimuli of increasing 

wavelengths up to approximately 830 nm.  However, the production of these ERPs 

appears to be related to the observer’s observance of the stimuli as evidenced by the 
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reduction in signal-to-noise ratios of responses in tasks for which the participant could 

not detect the onset of the target stimuli.  There is variation between participants and an 

LED condition which produces a response in one participant does not necessarily produce 

an equivalent response in another participant.  Figure 45 shows the variation in SNR 

observations for each participant and each wavelength in Task 1.  Additionally, Figure 46 

highlights the overlap between the signal-to-noise ratios at both O1 and O2 across 

participants as well the negative trend associated with the signal-to-noise ratios across 

wavelengths in Task 1.    
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Figure 45 - SNRs across Task 1 for each participant 

 
Figure 46 - Mean Signal-to-Noise Ratio across Participants in 1 Hz Task 

It does not appear that frequency coded information can be consistently observed 

in persons that do not observe either the onset or flicker of a visual stimulus as evidenced 

by the observations of oscillatory responses at target frequencies in the 4 Hz task at 810 

nm and 940 nm and lack of responses at both wavelengths in the 40 Hz task.  It appears 

dim stimuli oscillating at frequencies beyond the participant’s CFF can negatively impact 

our ability to capture and interpret frequency band powers at the relative frequency of the 

dim stimuli.  In multiple participants, across all of the target stimuli, the target 

frequencies or their harmonics can be identified by using the methods outlined in 

chapters II and III.  However, there is variation in the location of the dominant 

frequencies across participants for each wavelength and task.  Figures 47 and 48 highlight 

the variation between both subjects and frequencies across trials.  Figure 47 provides 

evidence that there was a high density of responses to the target stimuli.  However, the 
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preponderance of the responses were captured at the first harmonic frequency and not the 

target frequency in the 4 Hz trial (70% rate of identification).   

 

Figure 47 - Participant responses against 4 Hz task 

Figure 48 provides evidence that there was a reduction in the number of responses 

to the target stimuli in the 40 Hz task relative to the 4 Hz task.  Additionally, the 
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responses follow a negative trend as the peak wavelength of the target stimuli increases. 

(30% identification rate of target stimuli).  

 

Figure 48 - Participant responses against 40 Hz task 

 The results from each task in the experiment are summarized in Table 19.  Based 

on the findings, it is evident that the visibility of the stimuli may have contributed to the 

ability to identify responses via the prescribed approach.  Additionally, it is clear that the 

percentage of responses is concentrated at the shorter peak wavelength target stimuli 

versus the longer peak wavelength stimuli.  However, there were a considerable number 

of responses noted in the 4 Hz task (Task 2) when compared to tasks 1 and 3.  There may 

have been more responses in Task 2 because higher power responses occur at the lower 

frequency range of 4 – 12 Hz when compared to the higher frequency associated with 

Task 3. Also, the effects of dim stimuli on the amplitude of voltage responses in the 1 Hz 

task (Task 1) contributed to lower responses when compared to Task 2.  
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Table 19: Summary of results across tasks 

Wavelength 
(nm) 

Task 1 Task 2 Task 3 % by Stimuli 

640 83% 100% 83% 89% 

770 83% 100% 33% 72% 

810 17% 50% 0% 22% 

830 33% 67% 33% 44% 

940 0% 33% 0% 11% 

% by Task 43% 70% 30%  

 

 

 

 

V.  Conclusions and Recommendations 

Introduction of Research 

This research provides a concept for the use of long wavelength stimuli and 

frequencies beyond the human CFF as an alternative to obtrusive LEDs used in common 

BCI applications.  Using aspects common to existing BCI research, it was hypothesized 

that long wavelength LEDs operating at varying frequencies could be a feasible method 

for replacing current visual stimuli in BCI applications. 

Research Questions Answered 

 The basis of this research can be captured in the following research questions: 



99 

1. How does the wavelength of light emitted from Light-Emitting Diodes 
affect the signal characteristics of Event-Related Potentials produced in 
the human brain?  More specifically, which wavelengths of light-emitting 
diodes can be used to elicit VECPs in the visual cortex? 
 
When considering the appearance of time-locked ERPs and SNRs, the 

increasing wavelength of target stimuli appear to reduce the measured 

amplitudes of ERPs across participants (Woodman, 2010).  Additionally, there 

appears to be an associated decrease in the SNR observed across participants 

as the wavelength increases.  Although more obscured by noise when stimuli 

exist outside the visible range, ERPs can be observed in the visual cortex at 

wavelengths up to approximately 940nm.  

 
2. How does the frequency of light produced by Light-Emitting Diodes 

affect the characteristics of Event-Related Potentials produced in the 
human brain?  More specifically, can oscillatory frequencies above the 
human CFF be used to elicit oscillatory responses in the visual cortex 
without producing the visual perception of flicker? 
It has been demonstrated that LEDs oscillating at 4 Hz (observed flicker) and 

40 Hz (unobserved flicker) can be used to elicit oscillatory responses in the 

human brain.  Additionally, the observation of the oscillatory responses may 

be made when using stimuli of increasing wavelengths from 640nm to 940nm 

at 4 Hz and 640nm to 830nm at 40 Hz in some cases.  

Recommendations for Future Research  

There are several limitations that were not addressed in this research.  If possible, 

this research could be improved by identifying more experimental controls for the 

population of the experiment.  The obscure nature of brain activity occurring across 

subjects creates uncertainty around why a response may be encountered with one subject 
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and not another in the same experiment environment.  There are countless processes 

occurring in the brain at any given time and identifying many of those processes could 

facilitate a better understanding of the process that drives the occurrence of cortical 

responses.  Additionally, understanding why a response can be measured in a subject in 

one scenario and not another could be valuable to the expansion of this research.    

Noise is a confounding factor in the area of EEG research.  Noise can be 

generated by a number of environmental elements such as power lines, computer 

monitors, other electronics, ongoing brain activity, etc.  Efforts to expand the noise 

identification and filtering capabilities of the analysis process can increase the 

effectiveness of future research.  Additionally, a more robust data acquisition system 

could reduce the effects of environmental noise in future EEG research.  Data acquisition 

systems could include systems which do not require external amplification, wet 

electrodes, direct (wired) connection to amplifiers or computers, or AC power supplies. 

BCI applications for DoD users will need to be more compact and mobile than the 

system used in this research in order to be useful in cockpits (which have limited space 

available for additional equipment) or to provide feedback on attention in training 

scenarios.  By using unobtrusive stimuli oscillating at specific frequencies to elicit 

responses based on overt attention to time-locked stimuli, trainers could review attention 

at specific points in time to make corrections to human behaviors in specific scenarios.  

Steps taken to remove the confounding elements of EEG-based ERP experiments can 

increase the understanding of the aspects of these experiments that are relevant to the 

elicitation of specific responses consistently and can move DoD toward understanding 

how to build and implement systems based on this technology.  Any Future research 
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should address the following three areas not evaluated in the current research effort:  1) 

Analysis of mobile systems to determine the usability of the current systems 2) 

evaluation of robust signal analysis methods to improve signal-to-noise ratios of targeted 

responses 3) evaluation of factors affecting the variability of observed ERP (in both time 

and frequency domains) within and across participants.  To address these areas of 

concern, research should focus on ERP experiments that are component independent, if 

possible.  Also, the research should use a small group (1-3) of participants who are 

willing to participate in an experiment multiple times so the research can explore the 

repeatability of observations.  Demonstrating the repeatability of observations is much 

less disputable than the measures which rely on knowledge of EEG and typical ERPs to 

make determinations about the validity and meaning of responses.   

Summary or Significance of Research 

As the systems increasingly require cohesion and communication between the 

human-machine team, the means for increasing the bandwidth of that communication 

must be expanded.  BCIs could be used to increase the bandwidth within the human-

machine team; however, the use of stimuli which may be a distraction and impede task 

completion make it unlikely that BCIs would be used in military operations.   

This research takes steps to successfully demonstrate the potential for using non-

disruptive stimuli in BCI applications and lays the groundwork for developing more 

robust systems by demonstrating the following: 
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1. ERPs can be observed in humans when using LEDs that emit long wavelength 

energy as visual stimuli; however, the ratio of signal to noise continues to 

decrease as the wavelength of the target stimuli is increased.   

2. Oscillatory responses can be observed, in the human brain, in response to 

LEDs emitting energy at oscillating frequencies below the rate at which the 

human observes flicker when using stimuli emitting energy at peak 

wavelengths between 640 nm and 940 nm and above the rate at which the 

human observes the flicker from peak wavelengths of 640 nm to 830 nm 

respectively. 
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Appendix A: MATLAB Code 

 

Contents 
 get EEG data 
 find digital events 
 create epochs 
 zero mean all epochs 
 Average epochs 
 compute power spectrum 
 plot figures 

clearvars -except collection 
trial=5; 
task=4; 
participant=1:6; 
channels=4:5; 
 
frequency_range=[30 50]; 
 
srate=2000; 
 
 
for part=participant 
clearvars -except collection trial task participant channels srate collection640 part 
temp_collection frequency_range 

get EEG data 
    data       = collection(part,trial,task).data(:,channels);       %EEG data 
    digital    = collection(part,trial,task).data(:,end);            %All three 
digital channels 
 
    
FILTER=designfilt('bandpassfir','FilterOrder',2000,'CutoffFrequency1',frequency_range(
1),'CutoffFrequency2',frequency_range(2),'SampleRate',2000); 
    data=filtfilt(FILTER,data); 

find digital events 
    digital(2:end+1,2)  =   digital(:,1);               %create second column equal to 
first shifted down one row 
    digital(end,:)      =   [];                         %chop off extra data points at 
the end 
    digital(1,2)        =   digital(1,1);               %copy fist data point to make 
sure it is not confused for a switch 
    switches            =   digital(:,1)-digital(:,2);  %this returns a negative 
number wherever it was swithced off, and positive wherever it was turned on 
 
    zeroI               =   find(switches>0);           %index values of the positive 
edges (time zeros) in the digital signal 
    zeroI(1:3)=[]; 
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create epochs 
    boundsT=[0 3]; %bounds (in seconds) of the epochs 
 
    boundsI     =   round(boundsT*srate);                   %convert time bounds to 
index bounds 
    epochsI     =   [zeroI+boundsI(1), zeroI+boundsI(2)];   %index values of the epoch 
bounds 
    [r,c]       =   find(epochsI>size(data,1) | epochsI<1); %find the epochs which 
reach outside the limits of the EEG data 
    epochsI(r,:)=   [];                                     %remove the epochs which 
reach outside the limits of the EEG data 
 
    % the following extracts the epochs from the EEG signal. In the epochs 
    % matrix, time descends down the rows, each column is a channel, and each 
    % page (in the third dimension) is an epoch 
    for ep=1:size(epochsI,1) 
        epochs(:,:,ep)=data(epochsI(ep,1):epochsI(ep,2),:); 
    end 

zero mean all epochs 
    avgs=mean(epochs,1); 

    avgs=repmat(avgs,size(epochs,1),1,1); 

 

    epochs=epochs-avgs; 

Average epochs 
    epochAVG=mean(epochs,3); %this averages all epochs together for each channel 

compute power spectrum 
    [pxx,fxx]=periodogram(epochAVG,[],[],srate); 

 

    [r,c]=find(fxx>=frequency_range(1) & fxx<=frequency_range(2)); %select only 
freqencies withen the range selected 
    fxx=fxx(r,:); 
    pxx=pxx(r,:); 
 
%     array(:,1)=fxx; %this is used when writing to Excell 
%     array(:,2:3)=pxx; %this is used when writing to Excell 
 
    pxx=prod(pxx,2); %multiply two channels together 
    pxx=pxx.*fxx; %frequency correction 
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%     array(:,4)=pxx; %this is used when writing to Excell 
 
 
%     % write to Excel 
%     epochNum=size(epochs,3); 
%     path='C:\Users\tdyuser\Desktop\LEDfreq\SSVEP\'; 
%     file=['Trial_',num2str(trial)]; 
% 
%     header={'Frequency (Hz)','O1 (uV^2)','O2 (uV^2)','(O1*O2)*frequency/max 
(normalized)','',num2str(epochNum)}; 
% 
% 
%     xlswrite([path,file],array,part,'A2:D83'); 
%     xlswrite([path,file],header,part,'A1:F1'); 
 
 
    temp_collection(:,part)=pxx; 
end 

plot figures 
figure 

plot(fxx,temp_collection) 

legend('1','2','3','4','5','6') 
xlim([frequency_range(1) frequency_range(2)]) 
grid on 
 
figure 
plot(fxx,mean(temp_collection,2)) 
legend('1','2','3','4','5','6') 
xlim([frequency_range(1) frequency_range(2)]) 
grid on 

 
Published with MATLAB® R2015a 
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Appendix B: LED Data Sheets  

Overview 

 The LEDs used during the experimental data collection were a central part of the 

research effort.  There were aspects of the research that were affected by the specific 

technical specifications of each LED used in the experiment.  The data sheets describing 

the operation and performance of the LEDs are included in this appendix.   
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Appendix C: Institutional Review Board Approval for Protocol 
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